一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n。每个格子上都染了一种颜色colori用[1,m]当中的一个整数表示),并且写了一个数字numberi。
定义一种特殊的三元组:(x,y,z),其中x,y,z都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:
1. xyz是整数,x<y<z,y-x=z-y
2. colorx=colorz
满足上述条件的三元组的分数规定为(x+z)*(numberx+numberz)。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以10,007所得的余数即可。
第一行是用一个空格隔开的两个正整数n和m,n表纸带上格子的个数,m表纸带上颜色的种类数。
第二行有n用空格隔开的正整数,第i数字numberi表纸带上编号为i格子上面写的数字。
第三行有n用空格隔开的正整数,第i数字colori表纸带上编号为i格子染的颜色。
6 2
5 5 3 2 2 2
2 2 1 1 2 1
82
6 2 5 5 3 2 2 2 2 2 1 1 2 1输出样例#1:
82【输入输出样例 1 说明】
15 4 5 10 8 2 2 2 9 9 7 7 5 6 4 2 4 2 2 3 3 4 3 3 2 4 4 4 4 1 1 1输出样例#2:
1388【数据说明】
【来源】
NOIP2015普及组复赛第3题